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We have considered the dislocation network model for the supersolid state in 4He crystals. In difference with
uniform two-dimensional and three-dimensional systems, the temperature of superfluid transition Tc in the
network is much smaller than the degeneracy temperature Td. It is shown that a crossover into a quasisuperfluid
state occurs in the temperature interval between Tc and Td. Below the crossover temperature the time of decay
of the flow increases exponentially under decrease in the temperature. The crossover has a continuous character
and the crossover temperature does not depend on the density of dislocations.
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Forty years ago Andreev and Lifshitz1 predicted the pos-
sibility of realization of a ground state of quantum crystals
with the number of sites larger than the number of atoms.
Empty sites in such a state are called zero-point vacancies. In
crystals consisting of Bose atoms zero-point vacancies be-
have as Bose quasiparticles, and at low temperatures they
become superfluid ones. Therefore the phenomenon pre-
dicted by Andreev and Lifshitz is called the supersolids. In
1970s the problem of supersolids addressed a number of the-
oretical papers,2–6 but numerous experimental efforts to dis-
cover this phenomenon failed �see Ref. 7�. The situation has
changed completely after the experiment of Kim and Chan8

in which a nonclassical rotational inertia �NCRI� of 4He
crystal was observed below certain critical temperature.
NCRI means that the 4He crystal does not rotate as a rigid
body, but certain �superfluid� fraction of atoms is decoupled
from the rotation. Further experiments9–13 confirmed the
NCRI effect. It was established9–14 that the NCRI is not an
intrinsic property of 4He crystals. The amount of fraction
decoupled from the oscillations �rotation� depends consider-
ably on the degree of disorder in the crystal lattice; in par-
ticular, it becomes much smaller after annealing. A correla-
tion between supersolid features and disorder was also
observed in the direct flow experiment.15 A common expla-
nation of the correlation between disorder and supersolid be-
havior is that zero-point vacancies may emerge only at ex-
tended crystal lattice defects, presumable, in dislocation
cores. The idea on superfluid behavior of dislocations was
put forward in Ref. 16 �originally, in a context of description
of anomalous plastic properties of parahydrogen17�. In Ref.
18 this idea was applied for the explanation of NCRI. In Ref.
18 and in the following19 papers superfluid properties of dis-
locations were demonstrated by the first-principles Monte
Carlo calculations. A combined �dislocation network plus
bulk� mechanism of supersolidity was considered in Ref. 20.
The role of dislocations in this mechanism is similar to one
for the enhancement of superconductivity by dislocations.21

In this Rapid Communication we study the specifics of
the superfluid transition in the network of one-dimensional
�1D� wires and arrive at the following conclusion. The tem-
perature of the superfluid transition in the network is quite

small and it depends on the length of segments of the net-
work. At the same time, a crossover into a quasisuperfluid
state �a state with exponentially large time of relaxation of a
flow� takes place at much larger temperatures, and the cross-
over temperature does not depend on the length of the seg-
ments. It is just the behavior observed in torsion experiments
where the transition is continuous, and it occurs in the tem-
perature interval independent of the NCRI fraction.

The problem of the superfluid transition in a dislocation
network was studied in Ref. 22. It was shown that in the
two-dimensional �2D� network the critical temperature is
proportional to the inverse length of the segment. Let us
derive the result of Ref. 22 using the following simple argu-
ments. For a 2D uniform medium the Berezinskii-Kosterlitz-
Thouless �BKT� critical temperature is determined by the
equation Tc=��2ns2�Tc� /2m, where ns2 is the two-
dimensional superfluid density. The BKT transition is con-
nected with the energy of a vortex pair diverges logarithmi-
cally at large distances between the vortices. At such
distances the difference between a uniform medium and a
network is not important. Therefore, the critical temperature
for the network is given by the BKT equation in which the
uniform density ns2 is replaced with the average 2D super-
fluid density n̄2. The latter quantity can be expressed through
the 1D density of zero-point vacancies n and the length of
the segment of the network l. For the quadratic network n̄2
=2n / l, and the critical temperature is Tc=��2n /ml �m is the
effective mass of zero-point vacancies�.

In Ref. 23 a microscopic model of Bose-Einstein conden-
sation �BEC� of noninteracting zero-point vacancies in a
three-dimensional �3D� network was considered. It was
shown that the BEC temperature depends significantly on the
transparency of vertices �intersections of dislocations�, and
the highest value, reached at high transparency, is TBEC
�3�2n /2ml so the superfluid critical temperatures in 3D and
2D networks are of the same order.

The critical temperature Tc in a network is much smaller
than the degeneracy temperature for the 1D Bose gas of va-
cancies in a segment Td=�2n2 /m �the small parameter is
�nl�−1�1�. In this respect the network differs from uniform
2D and 3D systems, where Tc�Td. One can expect that the
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network may demonstrate quasisuperfluid behavior in a wide
range of temperatures between Tc and Td.

To be more specific we consider a 2D network. In a uni-
form 2D system the vortex-antivortex pairs unbind above the
BKT transition and vortices of opposite vorticities can move
independently from each other. If a given vortex crosses the
system in a direction perpendicular the flow, the superfluid
phase difference along the flow changes on 2�. In a uniform
system a motion of a vortex across the flow is caused by the
Magnus force and the viscous friction between the vortex
and the normal component. The network is a multiple con-
nected system, the vortices correspond to circular currents,
and they are pinned to given plaquettes. The vortex centers
cannot move freely, but they can jump from one plaquette to
another. This process becomes possible due to an emergence
of phase slip �PS� centers at the segments.

The theory of dissipation of supercurrent in 1D channels
based on the idea of emergence of PS centers was put for-
ward by Langer and Ambegaokar.24 The main shortage of the
theory24 is that it does not yield the pre-exponential factor in
the expression for the relaxation time. To obtain this factor
one should consider the dynamics of transition of the system
over the potential barrier under appearance of a PS center.
This problem was solved in Ref. 25 on the base of the diffu-
sive �time-dependent Ginzburg-Landau� equation. We solve
the problem with the use of the wave �Gross-Pitaevskii�
equation that describes an essentially different physical
mechanism of relaxation of the supercurrent.

If the vortex is already present in a given plaquette the PS
of the proper sign provides annihilation of that vortex and
creation of a vortex of the same vorticity in the neighbor
plaquette. A vortex may jump to any neighbor plaquette, but
there is a preferable direction of such jumps in a system with
a flow. Let us, for simplicity, consider a regular quadratic
network with a flow directed parallel to the segments �say x
direction�. If the vortex is centered in a given plaquette the
superfluid velocities in the segments that form this plaquette
read as vA=vv+vs, vC=vv−vs , vB=vD=vv, where A and C
stand for the segments oriented along the x axis, while B and
D—for the segments oriented along the y axis �perpendicular
to the flow�. Here vs is the flow velocity, and vv=�� /2ml is
the contribution caused by the vortex. The frequency of PS
in a segment is proportional to its length, and it is a function
of the superfluid velocity �i= lf�vi�. One can see that �B
=�D and in average the vortices do not move in the x direc-
tion �the direction of the flow�. The PS frequencies for two
other segments differ from each other and one extra jump in
the perpendicular to the flow direction gains with the
frequency

�� = �A − �C = �lvs, �1�

where �=2f��v� �v=0 �here we imply the limit of small super-
fluid velocities�. In the network of a rectangle shape of area
S=Lx�Ly a vortex crosses the system with the frequency
�cross=Nv��l /Ly, where Nv=nvS is the total number of un-
bound vortices �nv is the vortex density�. Each cross lowers
the phase gradient on 2� /Lx that changes the flow velocity
on �vs=−2�� /mLx. The equation for vs, written in the dif-
ferential form, reads as

dvs

dt
= �cross�vs = −

2���nvl2

m
vs. �2�

The solution of Eq. �2� is vs=vs0e−t/�, where �
=m /2���nvl2 is the decay time. To compute � one should
specify the mechanism of PS. We will describe the gas of
zero-point vacancies in the dislocation core as a weakly non-
ideal 1D Bose gas with a complex condensate wave function
�order parameter� 	�x , t� that satisfies the Gross-Pitaevskii
�GP� equation. The 1D GP equation with a repulsive point
interaction has an exact solution that corresponds to a dark
soliton. The dark soliton is a rarefaction that moves with a
constant velocity u.

The dark soliton is described by the function26

	�x,t� = �ñ��1 −
u2

c2 tanh	�1 −
u2

c2

x − ut




 + i

u

c
� .

�3�

Here 
=� /mc is the coherence length, c=��n /m is the
sound velocity, � is the interaction constant, ñ

=n�1−2�
 / l��1−u2 /c2�−1 is the renormalized density
�renormalization is the consequence of the conservation of
the total number of zero-point vacancies�. The energy of the
soliton reads as

E0 = �
0

l

dx� �2

2m
	d	

dx

2

+ 
�

2
��	�4 − n2��

=
4

3
�nc	1 −

u2

c2
3/2
. �4�

The soliton momentum p can be found by integration of
equation dp=dE0 /u:

p = − 2�n	u

c
�1 −

u2

c2 + arcsin
u

c

 + C , �5�

where C is the constant of integration. To determine C one
can take into account that the soliton momentum is the dif-
ference of the momentum of the system with and without the
soliton. The soliton emerges with the velocity u=+c−0 or
u=−c+0, and at such u its momentum should be equal to
zero. One can see that two conditions pu=�c=0 yield two
different integration constants C�= ��n�. Therefore, one
should consider two species of the solitons �the “+” and “−”
ones� with the momenta p� defined by Eq. �5� with C=C�.

It is important to emphasize that these two species corre-
spond two physically distinct solitons. According to Eq. �3�
the phase at the soliton has the additional shift �
�u�
=−2 cot−1�u /�c2−u2�. In any multiple connected system the
phase satisfies the Onsager-Feynman quantization condition,
and the appearance of a soliton should be accompanied by a
change in the net velocity: v=v0+�v��u�. The function
�
�u� is discontinuous at u=0 with the jump equal 2�. The
functions �v��u� should be continuous because small varia-
tion in u cannot result in a finite change in the net velocity.
Since �v+�+c�=0 and �v−�−c�=0, the function �v+�u�
��v−�u�. For instance, for a 1D ring with the perimeter l we
find �v�=����−2 arcsin�u /c�� /ml �we take into account
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that �
+ml�v� /�=0 mod 2��. Thus, solitons of distinct
species differ from each other by the change in the net ve-
locity they induce.

The soliton may change its velocity due to the interaction
with phonons and impurities. Since the soliton changes the
net velocity in a continuous way, it is more consistent to
consider PS as an entire process of creation of the soliton at
u=+c and its annihilation at u=−c or vise versa. The first
possibility corresponds to the “+” solitons, and the second
one − to the “−” ones.

To obtain the frequency of PS we consider solitons as
classical particles whose distribution functions f��p , t� sat-
isfy the Fokker-Planck equation

� f�

dt
= −

�s�

�p
, �6�

where s� are the soliton fluxes in the momentum space. They
read as

s� = A�f� − B�

�

�p
f�. �7�

The coefficients A� and B� satisfy the relation A�f0,�
−B�� f0,� /�p=0, where f0,�=exp�−E� /T� is the equilib-
rium distribution function, and E�=E0+ p�v are the soliton
energies at nonzero net velocity. Here we consider the case
of slow relaxation. In this case one can neglect the explicit
time dependence of f� and consider the fluxes s� as constant
quantities. Using the relation between the coefficient A and B
we rewrite Eq. �7� in the form

s� = − B�f0,�
�

�p
	 f�

f0,�

 . �8�

The distribution of the solitons with small p is close to equi-
librium one. The solitons with p�→ �2��n emerge only
due to nonzero s�. To attain such a momentum the soliton
should overcome the energy barrier �E=4�nc /3. Therefore
the fluxes are small and the distribution functions f� at p
= �2��n are much less than the equilibrium ones. The in-
tegration of Eq. �8� with the boundary conditions �f / f0� �p=0
=1 and �f / f0� �p=�2��n=0 yields

s� = 	�
0

�2��n dp

B�f0,�

−1

. �9�

Here we imply the case of small temperatures T��E and
small net velocities v�c. Then in the leading order the in-
tegral �Eq. �9�� is evaluated as

s� = �
B0,�

4�n
	2�nc

�T

1/2

exp	−
4�nc

3T
�

��nv�

T

 , �10�

where B0,� is the “diffusion” coefficient B� at u=0. Using
the exact form of f0 one finds that B�=−A�T / �u+v�. The
coefficient A=dp /dt is just the viscous friction force acting
on solitons. At small velocities this force is proportional to
the velocity of the soliton motion relative the normal com-
ponent A=−��u+v� that yields B=�T, where � is the fric-
tion coefficient �under assumption that � is the same for “+”

and “−” solitons, the coefficients A�=A and B�=B are the
same as well�.

The soliton distribution functions are normalized by the
condition nsol= �1 /2����fdp, where nsol is the soliton den-
sity. The quantities s� are the fluxes in the direction of larger
momenta p �negative sign of s− means that actual direction
of the flux is the opposite one�. The difference of their mod-
ules determines the frequency of PS’s:

� =
��s−� − s+�l

2��
. �11�

Using Eqs. �10� and �11� one finds the parameter � and ob-
tains the following expression for the decay time:

� = �0
1

nvl2	 T

2��nc

1/2

exp	4�nc

3T

 , �12�

where �0=m /�. According to Eq. �12� the crossover tem-
perature is T0=4�nc /3. For weakly nonideal Bose gas
T0 /Td���n /Td�1 and T0 /Tc� l /
�1 so Tc�T0�Td.

To evaluate the parameter �0 we consider the friction con-
nected with the interaction of the solitons with phonons. The
dark soliton is the exact solution of the 1D GP equation, and
it does not interact with phonons in 1D. But the dislocation
core is not a strict 1D system. It is a quasi-1D system with a
small but finite cross section. Such a system is described by
an effective 1D GP equation with an additional higher order
in 	 interaction term:27 i��	 /�t=−��2 /2m��2	 /�x2

+��	�2	−�1�	�4	. Due to such a term the reflection coef-
ficient R���1n /��2 for the phonons that scatter on soliton is
nonzero.27

The parameter �1n is evaluated as �1n���r� /
�2, where
r� is the radius the supefluid channel. As was shown in Ref.
27, at small u �and v=0� the time derivative of the soliton
momentum is given by the expression ṗ
=−�u=−C�mRT /��u, where the numerical factor C�1. It
yields �0��� /T��
 /r��4. The scale of �0 is determined by
the quantity � /T that is of order of 10−10 c−1 for T=0.1 K.

It is necessary to note one important point. One could
think that since the GP equation we use is invariant with
respect to translations it is impossible to describe the relax-
ation of superflow in the GP approach. But our approach is
basically the same as commonly used for the computation of
forces that act on a vortex in a 3D superfluid caused by its
interaction with phonons and rotons �see, for instance, Ref.
28�. In the latter case the GP approach is applied for the
computation of amplitudes of scattering of phonons on vor-
tices and for finding the momentum flux over the cylindrical
surface around the vortex line. In such a way one can obtain
the rate of transfer of the momentum from a vortex to
phonons, i.e., to the normal component, which is assumed to
be in equilibrium with the environment �walls, substrate,
etc.�

The specific of the 1D system is that for the GP equation
with only cubic interaction term the phonons do not interact
with solitons, and there is no transfer of the momentum from
solitons to the normal component. The fifth-order term
switches on that interaction and the momentum transfers
from solitons to 1D phonons of the network. 1D phonons
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interact with bulk phonons, and due to such an interaction
the normal component in the network remains in equilibrium
with the crystal �since the relaxation time in the phonon sub-
system is much smaller than � given by Eq. �12��. Eventu-
ally, the momentum obtained from solitons is transferred to
the crystal. Here we do not describe explicitly the mecha-
nism of such a transfer but just imply that the normal com-
ponent is in equilibrium with the environment.

Estimating Eq. �12� we obtain that the decay time is of
order of few seconds at T�0.04T0, and it is of order of an
hour at T�0.03T0. We note that at very small temperatures
quantum jumps between states with different vortex configu-
rations may become important �for 1D rings the quantum
jumps were studied in Refs. 29 and 30�. We estimate the
quantum correction to the � is �0�en
, and this correction
becomes important at T��n=T0 /n
�T0. The quantum cor-
rection results only in a modification of the law of increase in
the relaxation time under lowering of temperature, and its
accounting should not change the main conclusion on the

emergence of the quasisuperfluid state in the network well
above the critical temperature.

In this Rapid Communication we have considered qua-
sisuperfluidity in a 2D network. The situation in a 3D net-
work should be qualitatively the same. In the latter case su-
perflow may decay due to expansion or shrinking of vortex
rings. The mechanism of expansion �shrinking� of vortex
rings in a 3D network is basically the same as vortex motion
in a 2D network: both of them are connected with the phase
slips in segments of the network.

In conclusion, we note that the results obtained can be
also applied to multiple connected Bose-Einstein conden-
sates of rarefied alkali gases in optical lattices,31 where the
quasisuperfluid state can be observed directly.
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